
-
es, is
puta-

liza-
well-
pro-

t (typi-
ning
ter-
, and
, is

emon-
tional
hen an
an be
proach
entire

onent
com-

hat
roach
m any

Most
aptive
paral-
hemes
and a
cted
A ROBUST AND SCALABLE SOFTWARE LIBRARY FOR PARALLEL ADAPTIVE
REFINEMENT ON UNSTRUCTURED MESHES

John Z. Lou, Charles D. Norton, and Thomas A. Cwik
National Aeronautics and Space Administration

Jet Propulsion Laboratory, California Institute of Technology
MS 168-522, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, U.S.A.

{John.Lou, Charles.Norton, Thomas.Cwik}@jpl.nasa.gov

Abstract

The design and implementation ofPyramid (http://www-hpc.jpl.nasa.gov/APPS/AMR/), a soft
ware library for performing parallel adaptive mesh refinement (PAMR) on unstructured mesh
described. This software library can be easily used in a variety of unstructured parallel com
tional applications, including parallel finite element, parallel finite volume, and parallel visua
tion applications using triangular or tetrahedral meshes. The library contains a suite of
designed and efficiently implemented modules that perform operations in a typical PAMR
cess. Among these are mesh quality control during successive parallel adaptive refinemen
cally guided by a local-error estimator), parallel load-balancing, and parallel mesh partitio
using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an in
face to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity
portability. An EM waveguide filter application, adaptively refined using the Pyramid library
illustrated.

1. Introduction

Adaptive mesh refinement (AMR) represents a class of numerical techniques that has d
strated great effectiveness for a variety of computational applications including computa
physics, structural mechanics, electromagnetics, and semiconductor device modeling. W
application domain is discretized into a computational mesh, various portions of the mesh c
refined, or coarsened, in regions where varying degrees of accuracy are required. This ap
saves memory and computing time over methods that use a uniform resolution over the
application domain.

Unfortunately, the development of an efficient and robust adaptive mesh refinement comp
for an application, particularly for unstructured meshes on multiprocessor systems, is very
plex. The motivation for our work is to provide an efficient and robust parallel AMR library t
can be easily integrated into unstructured parallel applications. Therefore, our library app
separates support for parallel adaptive refinement and mesh maintainence techniques fro
application-specific solution processes.

Research on parallel AMR for unstructured meshes has been previously reported [1,8].
efforts are based on C++, and many realize that mesh quality control during successive ad
refinement is an active research topic. Our work features the use of Fortran 90 and MPI for
lel AMR on unstructured triangular and tetrahedral meshes, the implementation of robust sc
for parallel adaptive refinement and mesh quality control during a repeated AMR process,
“plug-in” component for stiffness matrix construction in finite element applications. We sele
Reprinted from NASA HPCCP Computational Aerosciences Workshop, pages 241-246, NASA Ames
Research Center, Moffett Field, CA, January 1999.

nefi-
cerns
rfor-

ran-
plica-
curs.
pletely

d on a
point,

ration
oach
tage of
Fortran 90 for our implementation because it provides new abstraction modeling facilities be
cal for parallel unstructured AMR development. This approach also simplifies interface con
with scientific application codes, many of which were developed in Fortran 77 for high pe
mance.

2. The AMR Components

The general organization of the parallel AMR process is illustrated. Initially, the (generally
dom) input mesh must be repartitioned and redistributed after loading from the disk. The ap
tion computation and local error-estimation step occur, after which a logical AMR process oc
(Load balancing can occur based on this process since the refinement scheme is com
defined, although it has not yet physically occurred.)

The load balancing process moves coarse elements from the logical refinement, base
weighting scheme, to the proper destination processors using the migration module. At this
the physical AMR step occurs by applying local refinement processes.

Finally, the element quality can be checked by performing an explicit mesh smoothing ope
or by ensuring high quality element creation during refinement. We apply the latter appr
since it prevents degradation of mesh quality after successive adaptive refinements. Every s
our AMR process is performed using parallelism.

3. Fortran 90 and Abstraction Modeling Principles in Parallel AMR Development

General organization of the parallel AMR process for unstructured meshes.

fea-
action,
90’s
g com-
syn-

y soft-
ls are
s, like
f paral-
oft-

anized

refine-
repeat-

logical
hether
eme is

deter-
refin-

ermined

comes
d. To
efore
g ele-

er tra-
ges on

arked)

ator,
ture of
anges
ensity
ld be
tively

ble to
Fortran 90 modernizes traditional Fortran 77 scientific programming by adding many new
tures. These features allow programs to be designed and written at a higher level of abstr
while increasing software clarity and safety without sacrificing performance [7]. Fortran
capabilities encourage scientists to design new kinds of advanced data structures supportin
plex applications, like parallel AMR. These capabilities extend beyond the well-known array
tax and dynamic memory management operations.

While Fortran 90 is not an object-oriented language (certain OO features can be emulated b
ware constructs) the methodology simplifies library interfaces such that the internal detai
hidden from library users [5]. Fortran 90 modules and derived types allow user-defined type
the mesh, to be defined with associated routines. Modules that capture essential features o
lel AMR can be combined with each other, adding to the flexibility and organization of the s
ware design. These techniques, and other features, allow the library to contain clearly org
interfaces for use in parallel applications.

4. The Adaptive Refinement Process

The adaptive refinement process is based on logical and physical refinements. The logical
ment step uses an iterative procedure that traverses through elements of the coarse mesh
edly to “define” a consistent mesh refinement pattern on the coarse mesh. The result of the
refinement is stored in the data structure of the coarse mesh, which completely specifies w
and how each element in the coarse mesh should be refined. Our adaptive refinement sch
based on “edge-marking” for both triangular and tetrahedral meshes. Starting from a pre
mined subset of elements, the logical refinement scheme proceeds by marking (or logically
ing) element edges wherever necessary, and the refinement pattern for each element is det
by the number of marked edges in that element.

With information generated from the logical refinement step, the actual mesh refinement be
conceptually simpler, since it is completely specified how each element should be refine
make the physical refinement process simpler and efficient, low-level objects are refined b
refining high-level objects. On a triangular mesh, it means edges are refined before refinin
ments.

To perform a parallel logical adaptive refinement, we extend the serial scheme so that aft
versing the local element set for edge-marking, each processor updates the status of ed
mesh partition boundaries by exchanging the edge status information (i.e. marked or not m
with its neighboring processors.

5. Mesh Quality Control

A problem associated with repeated AMR operations, typically guided by a local-error estim
is the deterioration of mesh quality. Most mesh smoothing schemes tend to change the struc
a given mesh to achieve the “smoothing effect” by rearranging nodes in the mesh. The ch
made by a smoothing scheme, however, could modify the desired distribution of element d
produced by the AMR procedure, and the cost of performing a global mesh smoothing cou
very high. Nevertheless, applying a relatively efficient smoothing scheme over the last adap
refined mesh is probably reasonable for mesh quality improvement. Alternatively, it is possi

ts will
apply

ire fur-
refine-
nts.

gular
ents
the

ement
itioner
migra-
ments

ritten
tween
ortran
ener-
d type
prevent, or slow
down, the degrada-
tion of element qual-
ity during a repeated
adaptive refinement
process.

The mesh quality
control scheme we
have applied classi-
fies elements based
on how they were
refined. This allows
us to forsee the
potential of creating
elements with poor
aspect ratios in the
next refinement.
After identifying
those elements, we
can replace them
with a refinement
pattern that improves
upon the geometry.

The figure shows the original refinement of a coarse element (2-3-4). Successive refinemen
destroy the aspect ratio of existing elements, leading to poor mesh quality. The approach we
modifies the coarse element refinement, as shown, should either of the child elements requ
ther refinement (due to local errors or mesh consistency constraints from neighbor element
ment). This process controls the mesh quality, at the slight expense of creating more eleme

We integrate the mesh quality control feature into our adaptive refinement scheme, for trian
meshes, by defining all possible refinement patterns for a pair of “twin” transitional elem
(child elements of element 2-3-4 in the original mesh). During the logical refinement step
scheme checks all marked edges of the twin elements allowing one of the indicated refin
patterns to be selected. To simplify the physical refinement stage we ensure that the part
will not place the twin elements onto different processors. This guarantees that once mesh
tion has occured, the physical refinement for the parent element (2-3-4) will create child ele
in a local manner. Refinement patterns are also applied for tetrahedral meshes as well.

6. Interlanguage Communication and Load Balancing Issues

Our software needs to communicate with the ParMeTiS parallel mesh partitioner, which is w
in the C programming languauge [6]. We have a single routine that acts as the conduit be
our Fortran 90 system and the C ParMeTiS library. Interlanguage communication between F
90 and C is not a problem, provided the linker knows the format of external routine names (g
ally, underscore_, doubleunderscore__, UPPERCASE, or lowercase). Fortran 90 derive

, but we
ering.
ber of

g the
. The
. Since
uni-

sh data
rs in a

atter-
etic
sidue
pti-

the
le of

lica-
AMR
0 and

ide fil-
will be
R

 bal-
essor.
sis-
objects can be passed by reference to C structures, or simple arrays can be communicated
advise using the Fortran 90 SEQUENCE attribute to request the proper byte-alignment ord
The weighted graph helps ParMeTiS attempt to minimize element movement and the num
components on partition boundaries.

This process involves converting the distributed mesh into a distributed graph by computin
dual of the mesh. When the partitioner returns, a mapping for every element is specified
migration module redistributes the elements among the processors based on this mapping
the communication is irregular, and unpredictable, an efficient non-blocking irregular comm
cation scheme has been developed for the element redistribution. In the final stage, the me
structure is reconstructed using efficient heap-sorting techniques. This entire process occu
parallel and distributed manner.

7. Application to an EM Waveguide Filter

Our AMR library has been tested in the finite-element simulation of electromagnetic wave sc
ing in a waveguide filter [4]. The problem is to solve Maxwell’s equation for the electromagn
(EM) fields in the filter domain. A local-error estimate procedure based on the Element Re
Method (ERM) is used in combination with the AMR technique to adaptively construct an o
mal mesh for the problem solution.

The adaptive refinement and partitioning of a finite element mesh for EM scattering in
waveguide filter is illustrated on 16 processors of the NASA Goddard Cray T3E. An examp
adaptive refinement for a 3D tetrahedral mesh is available.

8. Summary

A complete framework for performing parallel adaptive mesh refinement in unstructured app
tions on multiprocessor computers has been described. This includes a robust parallel
scheme, mesh quality control, load-balancing, the implementation technique using Fortran 9
MPI, and the interlanguage communication issues. Electromagnetic scattering in a wavegu
ter has been demonstrated. Parallel performance results on several multiprocessor systems
given in our final paper. More information on Pyramid: A JPL Parallel Unstructured AM
Library is also available.

The Table 1 gives performance results of the AMR (logical and physical) step and the load
ancing and migration step. The refinement randomly chooses half of the elements per proc
The number of elements increases with the partitioning slightly due to maintinain mesh con
tency constrains based on this refinement scheme.

Adaptive refinement, mesh partitioning, and migration applied to a waveguide filter.

Insti-
he
ce

on
996.

muni-

ies”.
ylor &

cat-
98.

ts in
ch

arse
997.

Pro-
.

rallel
Acknowledgments

The research described in this paper was performed at Jet Propulsion Laboratory, California
tute of Technology, under contract to the National Aeronautics and Space Administration. T
supercomputers used in this work were provided with funding from the NASA offices of Spa
Science, Aeronautics, and Mission to Planet Earth.

References

1. R. Biswas, L. Oliker, and A. Sohn. “Global Load-Balancing with Parallel Mesh Adaption
Distributed-Memory Systems.” Proceedings of Supercomputing `96, Pittsburgh, PA, Nov. 1

2. E. Boender. “Reliable Delaunay-Based Mesh Generation and Mesh Improvement.” Com
cations in Numerical Methods in Engineering, Vol. 10, 773-783 (1994).

3. Graham F. Carey, “Computational Grid Generation, Adaptation, and Solution Strateg
Series in Computational and Physical Processes in Mechanics and Thermal Science. Ta
Francis, 1997.

4. T. Cwik, J. Z. Lou, and D. S. Katz, “Scalable Finite Element Analysis of Electromagnetic S
tering and Radiation.” to appear in Advances in Engineering Software, V. 29 (2), March, 19

5. V. K. Decyk, C. D. Norton, and B. K. Szymanski. “Expressing Object-Oriented Concep
Fortran 90”. ACM Fortran Forum, vol. 16, num 1, pp. 13-18, April 1997. Also as NASA Te
Briefs, Vol. 22, No. 3, pp 100-101, March 1998 (reduced version).

6. G. Karypis, K. Schloegel, and V. Kumar. “ParMeTiS: Parallel Graph Partitioning and Sp
Matrix Ordering Library Version 1.0”. Tech. Rep., Dept. of Comp. Science, U. Minnesota, 1

7. C. Norton, V. Decyk, and B. Szymanski. “High Performance Object-Oriented Scientific
gramming in Fortran 90”. Proc. 8th SIAM Conf. on Parallel Proc. for Sci. Comp., Mar. 1997

8. M. Shephard, J. Flaherty, C. Bottasso, H. de Cougny, C. Ozturan, and M. Simone. “Pa
automatic adaptive analysis”. Parallel Computing 23 (1997) pg. 1327-1347.

Table 1: Results for Waveguide Filter after 3 Refinements on the NASA Goddard Cray T3E

of Processors AMR Time
Load Balancing

(Migration) Time
Number of
Elements

32 57.34 sec 15.36 sec 292,612

64 13.55 sec 3.75 sec 295,405

128 2.93 sec 1.65 sec 305,221

256 0.54 sec 1.51 sec 335,527

512 0.27 sec 1.86 sec 397,145

	Table 1: Results for Waveguide Filter after 3 Refinements on the NASA Goddard Cray T3E

